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Specific heat in nonequilibrium systems
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We propose a general framework of calculating the specific heat of the system in nonequilibrium, where the
dynamics of the representative point can be separated into fast motion in a basin of energy landscape and the
slow stochastic jump motion among basins. We apply this framework to gaseous hydrogen and obtain the
observation timet(,y dependence of the specific heat. We find that the specific heat gives the quenched and
the annealed one in the limit 6,0 andt,,—, respectively. We also investigate the waiting time and the
observation time dependence of the specific heat and show that, for shorter waiting time, the observation time
must be longer to obtain the same degree of annealing. This tendency is consistent with the observation that the
glass transition temperature is higher for faster quenching.
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[. INTRODUCTION mal. In Sec. IIl apply the present formalism to gaseous hy-
drogen that is known to consist of ortho and para species.
Statistical dynamics for systems in equilibrium has beenSince the conversion time of the nuclear spins is comparable
well established and thermodynamic properties of a systeri Or larger thar,,s and the characteristic time of vibrational
in equilibrium can be calculated from microscopic informa-2nd rotational motion is much faster thagps, we consider

tions using the statistical dynamics. For systems in nonequi€ gaseous hydrogen as a two-basin system in the sense
librium, however, there are no clear definitions of “thermo- described above. We calculate the specific heat as a function

dynamic” quantites nor methods to evaluate them.©f the waiting timet,, before starting the observation and the
Nevertheless, in some systems in nonequilibrium such as sibservation time. We observe that the specific heat changes
percooled liquids, measurements of specific heat, specifi onu_nuou:ly fro(rj‘n the quenc_:heg_one to the annealed ohne asa
volume, etc. have been reportgt]. For example, a recent unction oft,, andt,ps. We give discussion in Sec. IV where
i i we argue the possibility of extending the present formalism
analysis has shown the specific heat of a class of glass forr% other physical quantities
ing materials in the supercooled state can be scaled in a '
certain way near the glass transition temperaf@ile There Il. FORMALISM
are many origins that inhibit a system to relax to equilibrium
and thus it is difficult to construct a theoretical framework to  In order to calculate the specific heat, we must take ac-
evaluate physical quantities for systems in nonequilibrium incount of the measurement operation explicitly. Figure 1
general. shows a typical temperature control of the heat bath, where
Recent progress of the study of spin glasses and structurt), andt,,s represent the waiting time and the observation
glasses has revealed that the characteristic of these systefitge, respectively. First the temperature of the heat bath is
can be understood with the so called energy landscape piclecreased fron, to T by timet, (the cooling procegsand
ture [3,4]. The purpose of this paper is to give a clear defi-we wait fort,, at T. In this process, the system is supposed to
nition of the specific heat of a system that can be describetelax toward equilibrium, but it is not always in equilibrium
within the energy landscape picture and devise a theoreticaltt’=t;+t,,. The state of the system depends on whether
method to evaluate it. The basic assumptions for the energine time scald’ is longer than the characteristic timg of
landscape picture is that the dynamics of the representativibe system or not. Next the temperature is increaséd, toy
point in the phase space can be described by fast motiotime t’ +t, (the heating procegsand is kept withT, ever
within a basin and slow stochastic motion among basinsafter. Here we assume to measure the specific heat by in-
This picture has emerged from extensive molecular dynamereasing temperature. The specific heat is measured by the
ics simulations[5]. When the characteristic time, of the  energy change between the states at timandt”"=t’+t,
stochastic motion becomes comparable to or exceeds the ob-t .
servation timet,,s, the system appears to be in nonequilib-  As the temperature is decreased megghecomes longer.
rium. Therefore we can consider the system as an annealétlhenr. is longer than the time scalésandt” —t’, systems
one whenr.<t,,s and as a quenched one wheg®ts. cannot relax to equilibrium in these time scales. This situa-
We give the basic formalism of the evaluation of the spe-tion can be understood as follows. There are many basins in
cific heat in Sec. Il. We assume that the energy of a system dle phase space. The representative point moves fast within a
a given temperature is well defined when the system is in onbasin and jumps stochastically among basins. We denote the
basin. After elevating the temperature by a certain amounfrobability density of finding the system in basiat timet”
we observe the energy of the system that is given by théy p;(T,,t"—t';T,t"). Notep;(T,,0;T,t") is the distribution
average of energies of basins that the system visitg n of the representative point among basingd”att’ that de-
The specific heat is defined by the initial slope of the energyends on the preparation process of the system béfota
increment in the limit of the temperature rise being infinitesi-the measurement of the specific heat, it is important whether
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In the following we consider two limits; One is the— oo,
t"—t'—oo limit, where the probability density depends only
— on the final temperaturd,, equilibrium state,p;(T,,t”
2 1 —t';T,t')=P{%T,). The specific heat is given by
=
S dPPY(Ty)
E lim  lim c(T,t’,t"—t’)=2i [a—TaEi(Ta)
t"—t! oo t! —w a
[0
=
= dE(T
[ + PF‘*(TEJ—O;(T d
& T, a T=T
= : | |
g ! ! ! This limit corresponds to the annealed system. The other is
T L ! ! thet’—0, t"—t’—0 limit, where the probability density of
oty Doty bt fops ! basini becomes equilibrium one at temperatiigeand inde-
! ' ' ' ! pendent ofT,, pi(Ta,t"—t";T,t")=P%T,). The specific
0 ¢ £ heat is given by

time [arb. units] dEi(Ta)

dT,

lim  limc(T,t/t"—t")=>, [Pf"*(TO)
FIG. 1. Temperature control of the heat bath, where time andy -+’ 0 t'—0 !
temperature are given in arbitrary units arie=t,+t,, andt”=t’

+t,+1tops. The time scales,, andt,ps represent the waiting and  This limit corresponds to the quenched system.
the observation time, respectively. The process betW}éegn] is
the cooling process and the process betweén’ +t,] is the heat-
ing process.

1
—

T

Ill. APPLICATION

A. Gaseous hydrogen

the time scales’ andt"—t’ are larger than the system's  ag 4 simple application of the framework presented in the

relaxation time or not and we express the probability dens'%receding section, we consider gaseous hydrogen that is

as a function ot’ andt”—t’. In order to define the specific ynown to have two species, ortho-hydrogen and para-

heat measured through the heating process, we consider tH?drogen and the conversion time between two species can

total energy of the system given by be as long as several days. Since the characteristic time scale
of the rotational motion of molecules is much faster than the
conversion time, we can consider molecular hydrogen as an

e({pi}, T =2 pi(Ta t" =t T,t)E(T), (1) assembly of the two-basin systems, provided that intermo-
' lecular interaction is negligible. Noting that the wave func-

tion should be antisymmetric under exchange of protons,

where we denote equilibrium energy in a basisEj(T,).  partition function for rotation and nuclear spif(T), is ex-

Here, it should be emphasized that the energy of the systepressed as the sum of partition function of ortho-hydrogen

in each basin is assumed to be well defined, because theg(T) and that of para-hydrogejn(T),

relaxation in a basin is much faster than the relaxation

among basins. We consider the total energy of the system J(M)=jo(T)+jp(T).

depends on time through the probability density for each

basin. In most of real experiments the energy difference be- It is known that the rotational contribution to the Helm-

tween the final state of the system at temperalyat time  holtz free energy oN gaseous hydrogen at temperatiires

t” and the initial state at temperatuTeat timet’ is mea- given by

sured. Unless one can takg— T andt”—t’ limits simul-

taneously, the specific heat cannot be well defined. In our AAT)==NKgTIn[jo(T) +jp(T)] 3

definition, we use the energy difference between the final

state of the system at temperatufg at time t” and the for annealed system and

virtual state of the system at tinié if it is kept at tempera-

ture T. As a result, the specific heat defined by taking the AQ(T)=— NkgT

limit T,—T exists at any time and it is natural definition for 8

theoretical treatment. Thus we define the specific heat of the

system in nonequilibrium by for quenched system. The specific heat for these systems
divided by NKkg are written as

3 1
2INTo(M+ ZInjp(T) (4)

de({pi}'Ta) (2)

c(T,t/ t"—t’ : J Jd. .
( ) dT, Tt CA(T)zﬁszﬁln](T)], (5)
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UT)= 3(: T 1(: T 6

C()_Z o( )+Z p( )s () ,
respectively, wher€ = d/dT{T2(3/dT)Inj,(T)} (a=0,p) is 200}
the specific heat of each species. The coefficients 3/4, 1/4 ir
Eq. (6) are probabilities for each species Bt . Experi- S 400

mental observation is compatible with the behavior of the
specific heat for quenched systéf. 600
Therefore when the time scale of spin conversion be-
comes comparable to the observation time, we can expect tt -8t
obtain a crossover of the specific heat between quenched an
annealed ones. In the following we apply the framework de-  -1000 f—————————— 5
scribed in Sec. Il to this system and study explicitly the /0
crossover of the specific heat.

FIG. 2. Free energies of both speci€®.is the characteristic
B. Two-basin system temperature for rotation. The full line is free energy of ortho state

. . . F,/kg and the dashed line is that of para stajgkg, wherekg is
We consider a simple relaxation process between thesge oltzmann constant. The ortho state is the global minimum at

two basins that correspond to ortho and para species of @gh temperatures, on the other hand, the para state is the global
molecular hydrogen. Suppose that the temperature of th@inimum at low temperatures.

heat bath is changed accordingTt). Denoting the prob-
ability density of a basiri at timet as p;(T,t), where T T, (t<0)
=T(t), time evolution of the probability density is assumed T={ T (0=<t<t,)

to obey the master equation
Ta (twgt),

( P"(T't)) :( wOp(AT) wp"(TA) ) ( pO(T’t)), (7)  Which is shown in Fig. 3, where we sgt=t,=0 assuming

Pp(T,t) Wop(T)  —wpo(T) /) \ pp(T,1) an ideal condition. Note thais scaled by a constat™* for
later convenience. It is straightfoward to solve E@). for

wherewij('T') is the transition rate from basinto j at tem- this temperature control. Noting that the eigenvalues of the

peratureT. Here we have assumed that the transition ratd"atrix on the right hand side of Eq7) are 0 and—A(T),
depends only on the temperature of heat bath at tim&/€re

t. The transition rate can be expressed a@,—(?) A= o D+o 0('AI')
= C expl— B(FA(T)—Fi(T))}, whereF(T) is the free en- P P
ergy of the transition state arf¢j(T) is that of basiri, andC

is a constant. Since partition functions of both species are
known, free energies of both species can be calculated and
these are shown in Fig. 2, whefg(T) andF,(T) are free
energy of the ortho and para species. To take account of th
activated process, we introduce free energy of the transitior
state as the form

=Ce“’%{1+
Jp(T)

chx(?), (10

S

FA(T)=Fo(T) +kga, (8)

wherekg« is the activation free energy. Then transition rates
between ortho and para species are expressed as

Temperature [K]

&3

Woo(T)=Cexp(—a/T),

~

(9)
Wpol T)=C expl— a/T)jo(T)/j o(T). : bo 1 tobs

Since the stationary probability of staieis denoted as 0
PEYT)=ii(T)Hio(T) +]jp(T)}, we find that the detailed
balance is satisfied.

As a specific temperature control, we consider the follow- FIG. 3. Temperature control of the heat bétlo-step tempera-
ing two-step process; ture shift process wheret is scaled by a consta@ ™.
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we find fort<t,,, 25

pi(T.H)=PFYT)+[PF4To)—P{AT)]e DL (11) 2}
For t>t,,, the probability density relaxes to a new equilib- g
rium state PYY(T,) from the initial destributionp;(T,t,,).
The probability density for this two-step temperature control _-~
process at timé, +typs, Pi(Tastops: Totw), IS expressed as 5

15F

00, tobs

(T

pi(Ta vtobs;Tatw) = P;eq(Ta) + [pi(Tatw) - Pieq(Ta)] o3r

X e*}\(Ta)tobs_ (12)

0 50 100 150 200 250 300 350 400 450

We calculate the specific heat of the system in nonequilib- T [K]

rium using expressiondl) and(12) as
g exp K1) (12 FIG. 4. Observation time dependence affT,x,t,,s, where

c(T,=,tope is the specific heat divided bykg. The lines repre-

(T, ty,tops) sent the specific heat for different observation times. Theyt ate
=1x10"3 5x1072 1x10°%, 5x10°%, 1.0, 2.0, 5.0 from below.
:2 PFYT)Ci(T){1—exd —N(T)(ty+topd 1} There are no differences for high temperatures.
I
+ 2 PEYTo)Ci(T)exd — N (T)(ty+tops)] im - fim S(T,tw tond = 2 PFATICI(T)
i obs™® y—*
dPeY(T) d\(T) dPPY(T)
e o MMtgpey . N el B~
+ 2 g BT (e Mhons) —tp = +2 —gr E(M.
The casdi) corresponds to the quenched expression(&x.
€q — P& )
Xzi {PFA(To) — PIAMIE(T) becauseP;Y(To) =3/4, PY(To)=1/4 for Toy=x=. The case
(ii) agrees with the annealed expression &g.
Xex = NT)(ty+tops) ], (13 Second, we obtain the dependence of the specific heat on

the observation time. Suppose that we wait for a long time
whereE;(T) andC;(T) are the energy and the specific heatafter cooling, that is, we sdt,==, then the specific heat
of each species, and both of them can be calculated frorhecomes
partition functionj ,(T) (a«=o0,p). We find that the specific

heat depends on two time scalgg,andt,,s, and two tem- B eq dPFY(T)
peratures,T, and T. Here we seta=3, To=2 that are C(T’Oo't‘)bs)_zi: Pi (T)Ci(THZ - dT
needed for numerical calculation.

The specific heat could be negative whgnandt,,s are XE;(T)(1—e MDlovs), (14

in an appropriate finite range, because of the fourth term on

the right hand side of Eq13). This is due to the following The behavior of the specific heat Ed4) is shown in Fig. 4.
reason: when the Wamng t|va is not |Ong enough’ the From this figure one can find that the SyStem behaves as
system cannot catch up with the temperature change and Stgyenchedlike for a short time observation, while it behaves
in nonequilibrium state, and then the system continues t@s annealedlike for a long time observation.

release energy even after the observation is started. Third, to see whether the observation time is long enough
or not, that is, whether the system is near the annealed one or

not, we quantify an intermediate state between the quenched
and the annealed systems. To quantify the degree of anneal-
We first discuss two limiting behaviors of the specific ing, a new quantitys(T,t,, ,t,p9 is introduced by
heat obtained above. It is easy to show the following limits.
(i) Short waiting and observation time limit,(—0, tys (T, tw,topd — C(T)

: S(T ty,tope) = . 15
—.0); (Titwitond) = — A 5 (15

C. Results

lim  lim c(T,ty, topd = >, PEXTo)Ci(T). From this quantity we can find that the system is the

! quenched one fo6=0 and that it is the annealed one for
S=1. The behavior ofS(T,t, ,top9 at T=40 K on the

(i) Long waiting and observation time limitt(— o, tw-tops Plane is shown as a contour plot in Fig. 5. This figure
tobs—®); shows that the narrow region whe®e=0 of this plane cor-

tobséo tWHO
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tobs 5

tobs
FIG. 5. The degree of annealin§(T,t,,,typg, in the ty, typs

plane. This figure is contour plot &(40t,,,t,,s. The lines repre- FIG. 6. TheS=0.5 lines forT=200, 120, 80, 60, 40, and 20.25

sentS(404,, ,topd =0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. from left to right. The temperature df=20.25 corresponds to the
boiling point of hydrogen. The quantitiesb correspond to a cer-

responds to the quenched system and the wide region whetain waiting time and a certain observation time, respectively.

S~=1 to the annealed one. Moreover, we notice that the same

degree of annealing can only be obtained for longgt shown in Fig. 6. We find that th8=0.5 line shifts from left

whent,, is short. Therefore it can be stated that the faster thé0 right with the temperature decrease. Here we consider a

system is cooled the easier it becomes the quenched one.measurement that can be characterized by a set of two time

would correspond to the cooling rate dependence of the glaggales, {,topd =(a,b). Supposing the lin&=0.5 is a de-
transition. marcation line between annealed and quenched systems, the

point (a,b) in thet,-t,,s plane shown in Fig. 6 corresponds
IV. CONCLUSION AND DISCUSSION to the annealed case for high temperatures, and it corre-
sponds to the quenched case for low temperatures. Then the
On the assumption that relaxation process is separatagmperature at which th=0.5 line passes the poina(b)
into fast and slow processes, we proposed a method to catorresponds to the glass transition temperaiiyeAs a re-
culate the specific heat of the system in nonequilibrium. Insult, we can conclude that the glass transition temperature
this framework, we took account of the activated process otlepends on the procedure of a measurement.
the representative point in the phase space and the tempera-Moreover, in a series of continuous measurements, the
ture control of the heat bath, which play crucial roles. Sincecooling rate is expressed as the function of two time scales,
the calculated specific heat depends on two time scales, the=uv(t,,,t,,d. If the cooling rate is changed, these two time
waiting timet,, and the observation timg, s, we can inves- scales will change and then the glass transition temperature
tigate the dependence of the specific heat on these times. W, will also change. This situation corresponds to the cooling
applied this method to the gaseous hydrogen system, whidtate dependence in the glass transition. Details will be stud-
could be regarded as a two-basin system. The calculated spied in a forthcoming paper.
cific heat of this system exhibited the quenchedlike specific
heat when the observation time is short and the annealedlike
one when the observation time is long. In addition, time
regions corresponding to the quenched system and the an- This study was partially supported by a Grant-in-Aid for
nealed system are distinguished in thet,,s plane. Scientific Research from the Ministry of Education, Culture,
Now we draw lines 0f5S=0.5 for various temperatures as Sports, Science, and Technology.
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