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Specific heat in nonequilibrium systems

Toshiaki Tao, Akira Yoshimori, and Takashi Odagaki
Department of Physics, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan

~Received 5 April 2001; published 21 September 2001!

We propose a general framework of calculating the specific heat of the system in nonequilibrium, where the
dynamics of the representative point can be separated into fast motion in a basin of energy landscape and the
slow stochastic jump motion among basins. We apply this framework to gaseous hydrogen and obtain the
observation time (tobs) dependence of the specific heat. We find that the specific heat gives the quenched and
the annealed one in the limit oftobs→0 andtobs→`, respectively. We also investigate the waiting time and the
observation time dependence of the specific heat and show that, for shorter waiting time, the observation time
must be longer to obtain the same degree of annealing. This tendency is consistent with the observation that the
glass transition temperature is higher for faster quenching.

DOI: 10.1103/PhysRevE.64.046112 PACS number~s!: 05.70.Ln, 64.70.Pf
e
te
a-
qu
o-
m
s

ci
t
r

in

m
to
i

tu
te
p
fi
be
tic
r
ti
ti
in
am

o
ib
a

e
m
on
un
th

rg
si

hy-
ies.
ble
l

ense
tion
e
ges
as a
e
sm

ac-
1

ere
on
h is

to

her

in-
the

ua-
s in

hin a
the

ther
I. INTRODUCTION

Statistical dynamics for systems in equilibrium has be
well established and thermodynamic properties of a sys
in equilibrium can be calculated from microscopic inform
tions using the statistical dynamics. For systems in none
librium, however, there are no clear definitions of ‘‘therm
dynamic’’ quantities nor methods to evaluate the
Nevertheless, in some systems in nonequilibrium such as
percooled liquids, measurements of specific heat, spe
volume, etc. have been reported@1#. For example, a recen
analysis has shown the specific heat of a class of glass fo
ing materials in the supercooled state can be scaled
certain way near the glass transition temperature@2#. There
are many origins that inhibit a system to relax to equilibriu
and thus it is difficult to construct a theoretical framework
evaluate physical quantities for systems in nonequilibrium
general.

Recent progress of the study of spin glasses and struc
glasses has revealed that the characteristic of these sys
can be understood with the so called energy landscape
ture @3,4#. The purpose of this paper is to give a clear de
nition of the specific heat of a system that can be descri
within the energy landscape picture and devise a theore
method to evaluate it. The basic assumptions for the ene
landscape picture is that the dynamics of the representa
point in the phase space can be described by fast mo
within a basin and slow stochastic motion among bas
This picture has emerged from extensive molecular dyn
ics simulations@5#. When the characteristic timetc of the
stochastic motion becomes comparable to or exceeds the
servation timetobs, the system appears to be in nonequil
rium. Therefore we can consider the system as an anne
one whentc!tobs and as a quenched one whentc@tobs.

We give the basic formalism of the evaluation of the sp
cific heat in Sec. II. We assume that the energy of a syste
a given temperature is well defined when the system is in
basin. After elevating the temperature by a certain amo
we observe the energy of the system that is given by
average of energies of basins that the system visits intobs.
The specific heat is defined by the initial slope of the ene
increment in the limit of the temperature rise being infinite
1063-651X/2001/64~4!/046112~5!/$20.00 64 0461
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mal. In Sec. III apply the present formalism to gaseous
drogen that is known to consist of ortho and para spec
Since the conversion time of the nuclear spins is compara
to or larger thantobs and the characteristic time of vibrationa
and rotational motion is much faster thantobs, we consider
the gaseous hydrogen as a two-basin system in the s
described above. We calculate the specific heat as a func
of the waiting timetw before starting the observation and th
observation time. We observe that the specific heat chan
continuously from the quenched one to the annealed one
function of tw andtobs. We give discussion in Sec. IV wher
we argue the possibility of extending the present formali
to other physical quantities.

II. FORMALISM

In order to calculate the specific heat, we must take
count of the measurement operation explicitly. Figure
shows a typical temperature control of the heat bath, wh
tw and tobs represent the waiting time and the observati
time, respectively. First the temperature of the heat bat
decreased fromT0 to T by time t1 ~the cooling process! and
we wait for tw at T. In this process, the system is supposed
relax toward equilibrium, but it is not always in equilibrium
at t85t11tw . The state of the system depends on whet
the time scalet8 is longer than the characteristic timetc of
the system or not. Next the temperature is increased toTa by
time t81t2 ~the heating process! and is kept withTa ever
after. Here we assume to measure the specific heat by
creasing temperature. The specific heat is measured by
energy change between the states at timet8 and t95t81t2
1tobs.

As the temperature is decreased more,tc becomes longer.
Whentc is longer than the time scalest8 andt92t8, systems
cannot relax to equilibrium in these time scales. This sit
tion can be understood as follows. There are many basin
the phase space. The representative point moves fast wit
basin and jumps stochastically among basins. We denote
probability density of finding the system in basini at timet9
by pi(Ta ,t92t8;T,t8). Notepi(Ta,0;T,t8) is the distribution
of the representative point among basins att95t8 that de-
pends on the preparation process of the system beforet8. In
the measurement of the specific heat, it is important whe
©2001 The American Physical Society12-1
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the time scalest8 and t92t8 are larger than the system
relaxation time or not and we express the probability den
as a function oft8 and t92t8. In order to define the specifi
heat measured through the heating process, we conside
total energy of the system given by

e~$pi%,Ta!5(
i

pi~Ta ,t92t8;T,t8!Ei~Ta!, ~1!

where we denote equilibrium energy in a basini asEi(Ta).
Here, it should be emphasized that the energy of the sys
in each basin is assumed to be well defined, because
relaxation in a basin is much faster than the relaxat
among basins. We consider the total energy of the sys
depends on time through the probability density for ea
basin. In most of real experiments the energy difference
tween the final state of the system at temperatureTa at time
t9 and the initial state at temperatureT at time t8 is mea-
sured. Unless one can takeTa→T and t9→t8 limits simul-
taneously, the specific heat cannot be well defined. In
definition, we use the energy difference between the fi
state of the system at temperatureTa at time t9 and the
virtual state of the system at timet9 if it is kept at tempera-
ture T. As a result, the specific heat defined by taking
limit Ta→T exists at any time and it is natural definition fo
theoretical treatment. Thus we define the specific heat of
system in nonequilibrium by

c~T,t8,t92t8![
de~$pi%,Ta!

dTa
U

Ta5T

. ~2!

FIG. 1. Temperature control of the heat bath, where time
temperature are given in arbitrary units andt85t11tw and t95t8
1t21tobs. The time scalestw and tobs represent the waiting and
the observation time, respectively. The process between@0,t1# is
the cooling process and the process between@ t8,t81t2# is the heat-
ing process.
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In the following we consider two limits; One is thet8→`,
t92t8→` limit, where the probability density depends on
on the final temperatureTa , equilibrium state,pi(Ta ,t9
2t8;T,t8)5Pi

eq(Ta). The specific heat is given by

lim
t92t8→`

lim
t8→`

c~T,t8,t92t8!5(
i

FdPi
eq~Ta!

dTa
Ei~Ta!

1Pi
eq~Ta!

dEi~Ta!

dTa
GU

Ta5T

.

This limit corresponds to the annealed system. The othe
the t8→0, t92t8→0 limit, where the probability density o
basini becomes equilibrium one at temperatureT0 and inde-
pendent ofTa , pi(Ta ,t92t8;T,t8)5Pi

eq(T0). The specific
heat is given by

lim
t92t8→0

lim
t8→0

c~T,t8,t92t8!5(
i

FPi
eq~T0!

dEi~Ta!

dTa
GU

Ta5T

.

This limit corresponds to the quenched system.

III. APPLICATION

A. Gaseous hydrogen

As a simple application of the framework presented in
preceding section, we consider gaseous hydrogen tha
known to have two species, ortho-hydrogen and pa
hydrogen and the conversion time between two species
be as long as several days. Since the characteristic time s
of the rotational motion of molecules is much faster than
conversion time, we can consider molecular hydrogen as
assembly of the two-basin systems, provided that interm
lecular interaction is negligible. Noting that the wave fun
tion should be antisymmetric under exchange of proto
partition function for rotation and nuclear spin,j (T), is ex-
pressed as the sum of partition function of ortho-hydrog
j o(T) and that of para-hydrogenj p(T),

j ~T!5 j o~T!1 j p~T!.

It is known that the rotational contribution to the Helm
holtz free energy ofN gaseous hydrogen at temperatureT is
given by

AA~T!52NkBT ln@ j o~T!1 j p~T!# ~3!

for annealed system and

AQ~T!52NkBTF3

4
ln j o~T!1

1

4
ln j p~T!G ~4!

for quenched system. The specific heat for these syst
divided byNkB are written as

cA~T!5
]

]T H T2
]

]T
ln j ~T!J , ~5!

d

2-2



4

th

be
ct
a

de
he

e
of
t

ed

at
im

a
a

f t
tio

te

w

the

ate

at
lobal
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cQ~T!5
3

4
Co~T!1

1

4
Cp~T!, ~6!

respectively, whereCa5]/]T$T2(]/]T)ln ja(T)% (a5o,p) is
the specific heat of each species. The coefficients 3/4, 1/
Eq. ~6! are probabilities for each species atT5`. Experi-
mental observation is compatible with the behavior of
specific heat for quenched system@6#.

Therefore when the time scale of spin conversion
comes comparable to the observation time, we can expe
obtain a crossover of the specific heat between quenched
annealed ones. In the following we apply the framework
scribed in Sec. II to this system and study explicitly t
crossover of the specific heat.

B. Two-basin system

We consider a simple relaxation process between th
two basins that correspond to ortho and para species
molecular hydrogen. Suppose that the temperature of
heat bath is changed according toT(t). Denoting the prob-
ability density of a basini at time t as pi(T̂,t), where T̂
5T(t), time evolution of the probability density is assum
to obey the master equation

S ṗo~ T̂,t !

ṗp~ T̂,t !
D 5S 2vop~ T̂! vpo~ T̂!

vop~ T̂! 2vpo~ T̂!
D S po~ T̂,t !

pp~ T̂,t !
D , ~7!

wherev i j (T̂) is the transition rate from basini to j at tem-
peratureT̂. Here we have assumed that the transition r
depends only on the temperature of heat bath at t
t. The transition rate can be expressed aswi j (T̂)
5C exp$2b„FA(T̂)2Fi(T̂)…%, whereFA(T̂) is the free en-
ergy of the transition state andFi(T̂) is that of basini, andC
is a constant. Since partition functions of both species
known, free energies of both species can be calculated
these are shown in Fig. 2, whereFo(T̂) andFp(T̂) are free
energy of the ortho and para species. To take account o
activated process, we introduce free energy of the transi
state as the form

FA~ T̂!5Fo~ T̂!1kBa, ~8!

wherekBa is the activation free energy. Then transition ra
between ortho and para species are expressed as

wop~ T̂!5C exp~2a/T̂!,
~9!

wpo~ T̂!5C exp~2a/T̂! j o~ T̂!/ j p~ T̂!.

Since the stationary probability of statei is denoted as
Pi

eq(T̂)5 j i(T̂)/$ j o(T̂)1 j p(T̂)%, we find that the detailed
balance is satisfied.

As a specific temperature control, we consider the follo
ing two-step process;
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T~ t !5H T0 ~ t,0!

T ~0<t,tw!

Ta ~ tw<t !,

which is shown in Fig. 3, where we sett15t250 assuming
an ideal condition. Note thatt is scaled by a constantC21 for
later convenience. It is straightfoward to solve Eq.~7! for
this temperature control. Noting that the eigenvalues of
matrix on the right hand side of Eq.~7! are 0 and2L(T̂),
where

L~ T̂!5vop~ T̂!1vpo~ T̂!

5Ce2a/T̂H 11
j o~ T̂!

j p~ T̂!
J [Cl~ T̂!, ~10!

FIG. 2. Free energies of both species.Q is the characteristic
temperature for rotation. The full line is free energy of ortho st
Fo /kB and the dashed line is that of para stateFp /kB , wherekB is
the Boltzmann constant. The ortho state is the global minimum
high temperatures, on the other hand, the para state is the g
minimum at low temperatures.

FIG. 3. Temperature control of the heat bath~two-step tempera-
ture shift process!, wheret is scaled by a constantC21.
2-3
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we find for t,tw ,

pi~T,t !5Pi
eq~T!1@Pi

eq~T0!2Pi
eq~T!#e2l(T)t. ~11!

For t.tw , the probability density relaxes to a new equili
rium statePi

eq(Ta) from the initial destributionpi(T,tw).
The probability density for this two-step temperature cont
process at timetw1tobs, pi(Ta ,tobs;T,tw), is expressed as

pi~Ta ,tobs;T,tw!5Pi
eq~Ta!1@pi~T,tw!2Pi

eq~Ta!#

3e2l(Ta)tobs. ~12!

We calculate the specific heat of the system in nonequ
rium using expressions~11! and ~12! as

c~T,tw ,tobs!

5(
i

Pi
eq~T!Ci~T!$12exp@2l~T!~ tw1tobs!#%

1(
i

Pi
eq~T0!Ci~T!exp@2l~T!~ tw1tobs!#

1(
i

dPi
eq~T!

dT
Ei~T!~12e2l(T)tobs!2tobs

dl~T!

dT

3(
i

$Pi
eq~T0!2Pi

eq~T!%Ei~T!

3exp@2l~T!~ tw1tobs!#, ~13!

whereEi(T) andCi(T) are the energy and the specific he
of each species, and both of them can be calculated f
partition functionj a(T) (a5o,p). We find that the specific
heat depends on two time scales,tw and tobs, and two tem-
peratures,T0 and T. Here we seta53, T05` that are
needed for numerical calculation.

The specific heat could be negative whentw and tobs are
in an appropriate finite range, because of the fourth term
the right hand side of Eq.~13!. This is due to the following
reason: when the waiting timetw is not long enough, the
system cannot catch up with the temperature change and
in nonequilibrium state, and then the system continues
release energy even after the observation is started.

C. Results

We first discuss two limiting behaviors of the speci
heat obtained above. It is easy to show the following lim

~i! Short waiting and observation time limit (tw→0, tobs
→0);

lim
tobs→0

lim
tw→0

c~T,tw ,tobs!5(
i

Pi
eq~T0!Ci~T!.

~ii ! Long waiting and observation time limit (tw→`,
tobs→`);
04611
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lim
tobs→`

lim
tw→`

c~T,tw ,tobs!5(
i

Pi
eq~T!Ci~T!

1(
i

dPi
eq~T!

dT
Ei~T!.

The case~i! corresponds to the quenched expression Eq.~6!
becausePo

eq(T0)53/4, Pp
eq(T0)51/4 for T05`. The case

~ii ! agrees with the annealed expression Eq.~5!.
Second, we obtain the dependence of the specific hea

the observation time. Suppose that we wait for a long ti
after cooling, that is, we settw5`, then the specific hea
becomes

c~T,`,tobs!5(
i

Pi
eq~T!Ci~T!1(

i

dPi
eq~T!

dT

3Ei~T!~12e2l(T)tobs!. ~14!

The behavior of the specific heat Eq.~14! is shown in Fig. 4.
From this figure one can find that the system behaves
quenchedlike for a short time observation, while it behav
as annealedlike for a long time observation.

Third, to see whether the observation time is long enou
or not, that is, whether the system is near the annealed on
not, we quantify an intermediate state between the quenc
and the annealed systems. To quantify the degree of ann
ing, a new quantityS(T,tw ,tobs) is introduced by

S~T,tw ,tobs![
c~T,tw ,tobs!2cQ~T!

cA~T!2cQ~T!
. ~15!

From this quantity we can find that the system is t
quenched one forS50 and that it is the annealed one fo
S51. The behavior ofS(T,tw ,tobs) at T540 K on the
tw-tobs plane is shown as a contour plot in Fig. 5. This figu
shows that the narrow region whereS.0 of this plane cor-

FIG. 4. Observation time dependence ofc(T,`,tobs), where
c(T,`,tobs) is the specific heat divided byNkB . The lines repre-
sent the specific heat for different observation times. They aretobs

5131023, 531022, 131021, 531021, 1.0, 2.0, 5.0 from below.
There are no differences for high temperatures.
2-4
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responds to the quenched system and the wide region w
S.1 to the annealed one. Moreover, we notice that the s
degree of annealing can only be obtained for longertobs
whentw is short. Therefore it can be stated that the faster
system is cooled the easier it becomes the quenched on
would correspond to the cooling rate dependence of the g
transition.

IV. CONCLUSION AND DISCUSSION

On the assumption that relaxation process is separ
into fast and slow processes, we proposed a method to
culate the specific heat of the system in nonequilibrium.
this framework, we took account of the activated process
the representative point in the phase space and the tem
ture control of the heat bath, which play crucial roles. Sin
the calculated specific heat depends on two time scales
waiting timetw and the observation timetobs, we can inves-
tigate the dependence of the specific heat on these times
applied this method to the gaseous hydrogen system, w
could be regarded as a two-basin system. The calculated
cific heat of this system exhibited the quenchedlike spec
heat when the observation time is short and the annealed
one when the observation time is long. In addition, tim
regions corresponding to the quenched system and the
nealed system are distinguished in thetw-tobs plane.

Now we draw lines ofS50.5 for various temperatures a

FIG. 5. The degree of annealing,S(T,tw ,tobs), in the tw-tobs

plane. This figure is contour plot ofS(40,tw ,tobs). The lines repre-
sentS(40,tw ,tobs)50.1, 0.3, 0.5, 0.7, and 0.9 from left to right.
J.
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shown in Fig. 6. We find that theS50.5 line shifts from left
to right with the temperature decrease. Here we consid
measurement that can be characterized by a set of two
scales, (tw ,tobs)5(a,b). Supposing the lineS50.5 is a de-
marcation line between annealed and quenched systems
point (a,b) in the tw-tobs plane shown in Fig. 6 correspond
to the annealed case for high temperatures, and it co
sponds to the quenched case for low temperatures. Then
temperature at which theS50.5 line passes the point (a,b)
corresponds to the glass transition temperatureTg . As a re-
sult, we can conclude that the glass transition tempera
depends on the procedure of a measurement.

Moreover, in a series of continuous measurements,
cooling rate is expressed as the function of two time sca
v5v(tw ,tobs). If the cooling rate is changed, these two tim
scales will change and then the glass transition tempera
Tg will also change. This situation corresponds to the cool
rate dependence in the glass transition. Details will be st
ied in a forthcoming paper.
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FIG. 6. TheS50.5 lines forT5200, 120, 80, 60, 40, and 20.2
from left to right. The temperature ofT520.25 corresponds to the
boiling point of hydrogen. The quantitiesa,b correspond to a cer-
tain waiting time and a certain observation time, respectively.
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